
2024 Fall Mathematical Analysis III 1

Solution 1

1. Let f be a 2π-periodic function which is integrable over [−π, π]. Show that it is integrable
over any finite interval and ∫

I
f(x)dx =

∫
J
f(x)dx,

where I and J are intervals of length 2π.

Solution It is clear that f is also integrable on [nπ, (n+2)π], n ∈ Z, so it is integrable on
the finite union of such intervals. As every finite interval can be a subinterval of intervals
of this type, f is integrable on any [a, b]. To show the integral identity it suffices to take
J = [−π, π] and I = [a, a+ 2π] for some real number a. Since the length of I is 2π, there
exists some n such that nπ ∈ I but (n+ 2)π does not belong to the interior of I. We have∫ a+2π

a
f(x)dx =

∫ nπ

a
f(x)dx+

∫ a+2π

nπ
f(x)dx.

Using ∫ nπ

a
f(x)dx =

∫ (n+2)π

a+2π
f(x)dx

(by a change of variables), we get∫ a+2π

a
f(x)dx =

∫ (n+2)π

a+2π
f(x)dx+

∫ a+2π

nπ
f(x)dx =

∫ (n+2)π

nπ
.

Now, using a change of variables again we get∫ (n+2)π

nπ
f(x)dx =

∫ π

−π
f(x)dx.

2. Verify that the Fourier series of every even function is a cosine series and the Fourier series
of every odd function is a sine series.

Solution Write

f(x) ∼ a0 +

∞∑
n=1

(an cosnx+ bn sinnx).

Suppose f(x) is an even function. Then, for n ≥ 1, we have

πbn =

∫ π

−π
sinnxf(x)dx =

∫ 0

−π
sinnxf(x)dx+

∫ π

0
sinnxf(x)dx .

By a change of variable and using f(−x) = f(x) since f(x) is an even function,∫ 0

−π
sinnxf(x)dx =

∫ π

0
sin(−nx)f(−x)dx = −

∫ π

0
sinnxf(x)dx,

one has

πbn = −
∫ π

0
sinnxf(x)dx+

∫ π

0
sinnxf(x) dx = 0.

Hence the Fourier series of every even function f is a cosine series.

Now suppose f(x) is an odd function. Then, for n ≥ 1, we have

πan =

∫ π

−π
cosnxf(x)dx =

∫ 0

−π
cosnxf(x)dx+

∫ π

0
cosnxf(x)dx .
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By a change of variable and using f(−x) = −f(x) since f(x) is an odd function,∫ 0

−π
cosnxf(x)dx =

∫ π

0
cos(−nx)f(−x)dx = −

∫ π

0
cosnxf(x)dx,

one has

πan = −
∫ π

0
cosnxf(x)dx+

∫ π

0
cosnxf(x)dx = 0 , ∀n ≥ 0 .

3. Here all functions are defined on [−π, π]. Verify their Fourier expansion and determine
their convergence and uniform convergence (if possible).

(a)

x2 ∼ π2

3
− 4

∞∑
n=1

(−1)n+1

n2
cosnx,

(b)

|x| ∼ π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x,

(c)

f(x) =

{
1, x ∈ [0, π]
−1, x ∈ [−π, 0]

∼ 4

π

∞∑
n=1

1

2n− 1
sin(2n− 1)x,

(d)

g(x) =

{
x(π − x), x ∈ [0, π)
x(π + x), x ∈ (−π, 0)

∼ 8

π

∞∑
n=1

1

(2n− 1)3
sin(2n− 1)x.

Solution

(a) Consider the function f1(x) = x2. As f1(x) is even, its Fourier series is a cosine series
and hence bn = 0.

a0 =
1

2π

∫ π

−π
x2dx =

1

2π

x3

3

∣∣∣∣π
−π

=
π2

3
,

and by integration by parts,

an =
1

π

∫ π

−π
x2 cosnxdx

=
1

nπ
x2 sinnx

∣∣∣∣π
−π
− 2

nπ

∫ π

−π
x sinnxdx

=
2

n2π
x cosnx

∣∣∣∣π
−π
− 2

n2π

∫ π

−π
cosnxdx

= 4
(−1)n

n2
.

For n ≥ 1,

|an| = | − 4
(−1)n+1

n2
| ≤ 4

n2
.

We conclude that the Fourier series converges uniformly by the Weierstrass M-test.
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(b) Consider the function f2(x) = |x|. As f2(x) is even, its Fourier series is a cosine series
and hence bn = 0.

a0 =
1

2π

∫ π

−π
|x|dx =

1

2π

x2

2

∣∣∣∣π
−π

=
π

2
,

and by integration by parts,

an =
1

π

∫ π

−π
|x| cosnxdx =

2

π

∫ π

0
x cosnxdx

=
2

nπ
x sinnx

∣∣∣∣π
0

− 2

nπ

∫ π

0
sinnxdx

= − 2

n2π
cosnx

∣∣∣∣π
0

= −2
[(−1)n − 1]

n2π
.

For n ≥ 1,

|an| = |2
[(−1)n − 1]

n2π
| ≤ 4

πn2
.

We conclude that the Fourier series converges uniformly by the Weierstrass M-test.

(c) As f(x) is odd, its Fourier series is a sine series and hence an = 0.

bn =
1

π

∫ π

−π
f(x) sinnxdx =

2

π

∫ π

0
sinnxdx

=
2

nπ
cosnx

∣∣∣∣π
0

= 2
[(−1)n − 1]

nπ
.

Now we consider the convergence of the series
4

π

∑∞
n=1

1

2n− 1
sin(2n − 1)x. Fix

x ∈ (−π, 0) ∪ (0, π), Using the elementary formula

N∑
n=1

sin(2n− 1)x =
sin2(N + 1)x

sinx
,

one has that the partial sums |
∑N

n=1 sin(2n − 1)x| = | sin
2(N+1)x
sinx | ≤ | 1

sinx | are uni-

formly bounded. This also holds for x = 0, in which case |
∑N

n=1 sin(2n − 1)0| = 0.
Furthermore, the coefficients 1/(2n−1) decreases to 0. We conclude that the Fourier
series converges pointwisely by Dirichlet’s test.

(d) As g(x) is odd, its Fourier series is a sine series and hence an = 0. By integration by
parts,

bn =
1

π

∫ π

−π
g(x) sinnxdx =

2

π

∫ π

0
x(π − x) sinnxdx

= − 2

nπ
x(π − x) cosnx

∣∣∣∣π
0

+
2

nπ

∫ π

0
(π − 2x) cosnxdx

=
2

n2π
(π − 2x) sinnx

∣∣∣∣π
0

+
4

n2π

∫ π

0
sinnxdx

= − 4

n3π
cosnx

∣∣∣∣π
0

= − 4

n3π
[(−1)n − 1].
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As

|bn| ≤
8

πn3
,

we conclude that the Fourier series converges uniformly by the Weierstrass M-test.

4. Let f be a 2π-periodic function whose derivative exists and is integrable on [−π, π]. Show
that its Fourier series decay to 0 as n → ∞ without appealing to Riemann-Lebesgue
Lemma. Hint: Use integration by parts to relate the Fourier coefficients of f to those of
f ′.

Solution Performing integration by parts yields

πan =

∫ π

−π
f(x) cosnxdx = − 1

n

∫ π

−π
f ′(x) sinnxdx .

Therefore,

π|an| ≤
1

n

∫ π

−π
|f ′(x)|dx→ 0 , n→∞ .

Similarly the same result holds for bn.

5. Let f be a continuous 2π-periodic function. Show that its Fourier series decay to 0 as
n→∞ without appealing to Riemann-Lebsegue lemma. Hint: Establish the formula

2πan =

∫ π

−π
[f(y)− f(y + π/n)] cosny dy ,

using Problem 1.

Solution Setting y = z + π/n, we have

πan =

∫ π

−π
f(y) cosny dy

=

∫ π+π/n

−π+π/n
f(z + π/n) cos(z + π/n) dz

=

∫ π+π/n

−π+π/n
f(z + π/n)(− cos z) dz

= −
∫ π

−π
f(y + π/n) dy .

It follows that

2πan =

∫ π

−π
[f(y)− f(y + π/n)] cosny dy .

By assumption f is continuous on [−π, π], it is uniformly continuous there. For ε > 0,
there is some n0 such that |f(y) − f(y + π/n)| < ε for all y and n ≥ n0. It follows that
|an| < ε for all n ≥ n0, that is, an → 0 as n→∞. Similarly we can show bn → 0.

6. Let g be an integrable T -periodic function. Show that for any integrable function f on
[a, b],

lim
n→∞

∫ b

a
f(x)g(nx) dx =

1

T

∫ T

0
g(x) dx

∫ b

a
f(x) dx .

Suggestion: Consider the special case
∫ T
0 g(x)dx = 0 first.
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Solution First assume
∫ T
0 g(x)dx = 0. Divide an interval I = [c, d] into the union of

[c+ (k − 1)T/n, c+ kT/n], k = 1, · · · , N so that 0 < d− (c+NT/n) < T/n. Then∫ d

c
g(nx) dx =

N∑
k

∫ c+kT/n

c+(k−1)T/n
g(nx) dx+

∫ d

c+NT/n
g(nx) dx .

Since ∫ c+kT/n

c+(k−1)T/n
g(nx) =

∫ nc+kT

nc+(k−1)T
g(y) dy =

∫ T

0
g(y) dy = 0 ,

for each k,∣∣∣ ∫ d

c
g(nx) dx

∣∣∣ =
∣∣∣ ∫ d

c+NT/n
g(nx) dx

∣∣∣ ≤ ∫ c+(N+1)T/n

c+NT/n
|g(nx)| dy =

1

n

∫ T

0
|g(y)| dy,

which clearly tends to 0 as n→∞.

From the form of a step function we see that
∫ b
a s(x)g(nx) dx → 0 as n → ∞. By

approximating f by step functions from below as in the proof of the R-L lemma, we
see that ∫ b

a
f(x)g(nx) dx→ 0,

as n→∞ for every integrable function f .

Now, for any integrable T -periodic function g, the function h(x) = g(x) − 1
T

∫ T
0 g(y) dy

satisfies
∫ b
a h(x) dx = 0. From

lim
n→∞

∫ b

a
f(x)h(nx) dx = 0

we draw the desired conclusion.

Remark This problem extends Riemann-Lebsegue Lemma without much additional ef-
fort.

7. A sequence of integrable functions {gn}∞1 on [a, b] is called an orthonormal family if (a)∫ b
a gn(x)gm(x) dx = 0 for n 6= m and

∫ b
a g

2
n(x) dx = 1 for all n. Show that whenever

f(x) =
∑∞

n=1 cngn(x) holds, cn =
∫ b
a f(x)gn(x) dx for all n. Is the family {1, cosnx, sinnx}

orthonormal on [−π, π]?

Solution If f(x) =
∑∞

n=1 cngn, multiply it by gm and (formally) integrate to get∫ b

a
f(x)gm(x) dx =

∞∑
n=1

∫ b

a
cngm(x)gn(x) dx = cm , ∀m .

The family {1, cosx, sinx, · · · , } satisfies condition (a) but not (b). Indeed the normalized
one

{ 1√
2π
,
cosx√
π
,
sinx√
π
,
cos 2x√

π
,
sin 2x√

π
, · · · , }

forms an orthonormal family.


